Subject description - A0B38APH

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
A0B38APH FPGA Applications
Roles:V Extent of teaching:1P+3L
Department:13138 Language of teaching:CS
Guarantors:Sedláček R. Completion:KZ
Lecturers:Sedláček R. Credits:5
Tutors:Sedláček R. Semester:Z

Anotation:

After the short introduction into the structure and technology of programmable circuits (especially the CPLD and FPGA), the lectures are devoted to the VHDL and its usage for simulation and synthesis of digital circuits. Laboratories are focused on CPLD and FPGA circuit applications and on the use of SW instruments for programmable hardware design and simulation. Within the larger project implemented in the second part of laboratories, a complete device (system on the chip) is implemented in the FPGA or CPLD circuit. Students may choose from the list of projects or they can bring their own (even group projects are possible). Development boards with FPGA (or CPLD) are available. The result of the student survey of the course is here: AE0B38APH

Study targets:

The aim of the study is to teach students to understand FPGA circuits from the point of view of their internal structure. Students will learn to program FPGA in VHDL and gain basic knowledge about the design of the so-called system on a chip (SoC). They will also get acquainted with the typical possibilities of using FPGA circuits in practice.

Content:

1. Programmable components, history, and present.
2. Introduction to VHDL language, design units.
3. Writing numbers of characters and strings.
4. Basic data types and operators.
5. Basic objects - constants, variables, signals.
6. Parallel and sequential domain.
7. Implementation of state machines.
8. Standard libraries, LPM library, and their use.
9. Procedures and functions.
10. Design of combinational and sequential circuits.
11. Tools and methods for simulation.
12. Special internal structures (RAM, PLL, multipliers) and their use.
13. Creation of user libraries.
14. SoC implementation using built-in NIOS II processor.

Course outlines:

1. Programmable components, history, and present.
2. Introduction to VHDL language, design units.
3. Writing numbers of characters and strings.
4. Basic data types and operators.
5. Basic objects - constants, variables, signals.
6. Parallel and sequential domain.
7. Implementation of state machines.
8. Standard libraries, LPM library, and their use.
9. Procedures and functions.
10. Design of combinational and sequential circuits.
11. Tools and methods for simulation.
12. Special internal structures (RAM, PLL, multipliers) and their use.
13. Creation of user libraries.
14. SoC implementation using built-in NIOS II processor.

Exercises outline:

1. Introduction in QUARTUS II, opening project
2. Logic and arithmetic functions in VHDL, programming in the parallel domain.
3. Programming in the sequential domain - processes, flip-flops, and counters.
4. Design simulation using test vectors and test benches in ModelSim.
5. State automata - variants of VHDL implementation.
6. Usage of internal RAM in projects.
7. Usage of external RAM in projects.
8. Desing of SoC based on NIOS II - example I.
9. Desing of SoC based on NIOS II - example II.
10. Work on project implementation.
11. Work on project implementation.
12. Work on project implementation.
13. Work on project implementation.
14. Final project presentation, assessment.

Literature:

1. Pedroni, V.A.: Digital Electronics and Design with VHDL. Morgan Kaufmann 2008, ISBN: 978-0123742704
2. Ashenden, P. J.: The Designer's guide to VHDL. Morgan Kaufmann 2008. ISBN: 978-0-12-088785-9.

Requirements:

Basic knowledge of Boolean algebra, basic logic circuits, and programming in C language

Webpage:

https://moodle.fel.cvut.cz/courses/A0B38APH

Keywords:

VHDL language, FPGA circuits, programming, design, and synthesis of logic circuits

Subject is included into these academic programs:

Program Branch Role Recommended semester
BPOI1 Computer Systems V
BPOI_BO Common courses V
BPOI3 Software Systems V
BPOI2 Computer and Information Science V
BPKYR1 Robotics V
BPKYR_BO Common courses V
BPKYR3 Systems and Control V
BPKYR2 Sensors and Instrumentation V
BPKME1 Communication Technology V
BPKME5 Komunikace a elektronika V
BPKME_BO Common courses V
BPKME4 Network and Information Technology V
BPKME3 Applied Electronics V
BPKME2 Multimedia Technology V
BPEEM1 Applied Electrical Engineering V
BPEEM_BO Common courses V
BPEEM2 Electrical Engineering and Management V
BMI(ECTS) Manager Informatics V
BWM(ECTS) Web and Multimedia V
BIS(ECTS) Intelligent Systems V
BSI(ECTS) Software Engineering V


Page updated 24.6.2021 19:53:48, semester: L/2021-2, L/2020-1, Z,L/2022-3, Z/2021-2, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)