Subject description - AE3B33ROB

Summary of Study | Summary of Branches | All Subject Groups | All Subjects | List of Roles | Explanatory Notes               Instructions
AE3B33ROB Robotics
Roles:PO, V Extent of teaching:2P+2L
Department:13133 Language of teaching:EN
Guarantors:  Completion:Z,ZK
Lecturers:  Credits:6
Tutors:  Semester:L


The course introduces a robotics as an integrating discipline designing and exploring machines with high degree of flexibility and autonomy. Broader context of robotics is presented first and then kinematics and statics of robots is studied in the detail.

Study targets:

The goal of the course is to introduce industrial robots and manipulators, their design, kinematics, statics, and control. The course is designed for future experts who will be able to control robot, design its electronics, and consult kinematical design. The ability to implement geometry of the robot in programming language is emphasized.

Course outlines:

1. Robotics, industrial robot and application areas.
2. Geometry in robotics, terminology, number of degrees of freedom (DOF), structure of the manipulator.
3. Coordinate systems, transformation of coordinates.
4. Kinematics of a serial and paralel robot, joint and Cartesian coordinates, direct and inverse kinematics problems.
5. Representation of rotation and translation in the space.
6. Denavit-Hartenberg convention.
7. Inverse kinematics problem and its solution for the robot with 6 DOF and spherical joint.
8. Differential kinematics. Jacobian of the manipulator.
9. Statics of the robot.
10. Singular states of the robot.
11. Precision and repeatibility of a robot.
12. Actuators and sensors of robots.
13. Analysis of a robotic problem and its solution with a robot.
14. Description and calibration of a mechanical system with complex geometry.

Exercises outline:

Part of the labs is dedicated to solution of the direct and inverse kinematics of several robots, from simple ones to the 6-DOF robots. During rest of labs pairs of students solve practical exercise with the robots in the lab.
1. Introduction to laboratory assignments, MATLAB, a-test.
2. Correction of the a-test. MATLAB. Assignment 1: Transformations between Cartesian, cylindrical and spherical coordinates.
3. Transformations of coordinates while migrating between coordinate systems. Assignment 2: Transformation of the Cartesian coordinates.
4. Test 1: Transformation of Cartesian coordinates. Assignment 3: Problem on a real robot.
5. Assignment 4: Direct and inverse kinematics of a planar manipulator.
6. Description of a spatial manipulator in Denavit-Hartenberg notation. Assigment 5: Transformation between Euler angles and the rotation matrix.
7. Test 2: Denavit-Hartenberg notation, solution to direct and inverse kinematics problem for the manipulator with 3 DOFs. Assinment 6: Direct and inverse kinematics problem for the manipulator with 3 DOFs.
8. Solution to direct and inverse kinematics problem for a manipulator with 6 DOFs. Assignment 7: Direct and inverse kinematics problem for a manipulator with 6 DOFs.
9. Solving of the Assignment 3 on a real robot.
10. Solving of the Assignment 3 on a real robot in the open lab.
11. Solving of the Assignment 3 on a real robot in the open lab.
12. Solving of the Assignment 3 on a real robot in the open lab.
13. Solving of the Assignment 3 on a real robot in the open lab.
14. Solving of the Assignment 3 on a real robot in the open lab.


H. Asada, J.-J. E. Slotine: Robot Analysis and Control. Wiley-Interscience, 1986.


Delivery of all home assignments, delivery of final report of practical assignment, demonstration of function of practical assignment. More on:



Robotics, kinematics, robot control

Subject is included into these academic programs:

Program Branch Role Recommended semester
BEKME1 Communication Technology V 4
BEKME5 Komunikace a elektronika V 4
BEKME_BO Common courses V 4
BEKME4 Network and Information Technology V 4
BEKME3 Applied Electronics V 4
BEKME2 Multimedia Technology V 4
BEEEM1 Applied Electrical Engineering V 4
BEEEM_BO Common courses V 4
BEEEM2 Electrical Engineering and Management V 4
BEKYR1 Robotics PO 4
BEOI1 Computer Systems V 4
BEOI_BO Common courses V 4
BEOI3 Software Systems V 4
BEOI2 Computer and Information Science V 4

Page updated 22.6.2021 19:54:31, semester: L/2021-2, L/2020-1, Z,L/2022-3, Z/2021-2, Send comments about the content to the Administrators of the Academic Programs Proposal and Realization: I. Halaška (K336), J. Novák (K336)