Persons

Ing. Eliška Sedláčková

All publications

Acoustic Emission Technique for Battery Health Monitoring: Comprehensive Literature Review

  • DOI: 10.3390/batteries11010014
  • Link: https://doi.org/10.3390/batteries11010014
  • Department: Department of Electrotechnology
  • Annotation:
    The rapid adoption of electric vehicles (EVs) has increased the demand for efficient methods to assess the state of health (SoH) of lithium-ion batteries (LIBs). Accurate and prompt evaluations are essential for safety, battery life extension, and performance optimization. While traditional techniques such as electrochemical impedance spectroscopy (EIS) are commonly used to monitor battery degradation, acoustic emission (AE) analysis is emerging as a promising complementary method. AE’s sensitivity to mechanical changes within the battery structure offers significant advantages, including speed and non-destructive assessment, enabling evaluations without disassembly. This capability is particularly beneficial for diagnosing second-life batteries and streamlining decision-making regarding the management of used batteries. Moreover, AE enhances diagnostics by facilitating early detection of potential issues, optimizing maintenance, and improving the reliability and longevity of battery systems. Importantly, AE is a non-destructive technique and belongs to the passive method category, as it does not introduce any external energy into the system but instead detects naturally occurring acoustic signals during the battery’s operation. Integrating AE with other analytical techniques can create a comprehensive tool for continuous battery condition monitoring and predictive maintenance, which is crucial in applications where battery reliability is vital, such as in EVs and energy storage systems. This review not only examines the potential of AE techniques in battery health monitoring but also underscores the need for further research and adoption of these techniques, encouraging the academic community and industry professionals to explore and implement these methods. © 2025 by the authors.

Thermal stability of valuable metals in lithium-ion battery cathode materials: Temperature range 100–400 °C

  • DOI: 10.1016/j.jpowsour.2024.235795
  • Link: https://doi.org/10.1016/j.jpowsour.2024.235795
  • Department: Department of Electrotechnology
  • Annotation:
    Lithium is crucial in lithium-ion batteries (LIBs), serving as a main component of the electrolyte and cathode. Elements such as cobalt, nickel, and manganese are also vital for high performance, energy density, and stability. This study aimed to examine the behaviour of end-of-life cathode material (LiNi0.6Mn0.2Co0.2O2) and its valuable metals after exposure to temperatures between 100 and 400 °C, comparing it with untreated material. The lithium content cannot be reliably determined by conventional analytical methods, so inductively coupled plasma optical emission spectroscopy (ICP-OES) was chosen for this purpose. For ICP-OES measurements, samples were dissolved in different solvents for a specified time, and the concentrations of lithium, nickel, manganese, and cobalt were measured. From the measured values, their theoretical yields were calculated. Due to the annealing at given temperatures and subsequent dissolution, this step can be considered as the first stage of the pyrometallurgical-hydrometallurgical process used in battery recycling. The study was complemented by further analyses to monitor the effect of annealing temperatures on the properties of the material. Based on the results, it was found that the highest theoretical yield in this temperature range was for material annealed at 400 °C and dissolved in 20 % nitric acid for 4 h.

Responsible person Ing. Mgr. Radovan Suk