Lidé

Ing. Balžima Cikhardtová

Všechny publikace

Characteristics of fast deuteron sources generated in a dense plasma focus

  • DOI: 10.1140/epjp/s13360-021-01799-w
  • Odkaz: https://doi.org/10.1140/epjp/s13360-021-01799-w
  • Pracoviště: Katedra fyziky
  • Anotace:
    The paper characterizes sources of the fast deuterons which can produce the D–D fusion neutrons. Two pinhole cameras, the axial one and the slant one (oriented at 0° and 60° in relation to the z-axis), were equipped with solid-state nuclear track detectors and applied to investigate the fast deuterons of energies about 100 keV, which produce small quasi-circular track spots of diameters ranging (1–3) mm. They are often observed in plasma-focus shots with higher neutron yields, when they constitute a part of the recorded ion images in a form of azimuthal arcs and/or radial strips. An analysis of an influence of the global magnetic field, which acts along the fast deuteron trajectories, made it possible to determinate the deuteron sources localization, also outside the dense plasma column. The recorded spatial distribution of the fast deuterons, their temporal correlation with disruptions of the ordered plasma structures inside and outside the pinch column, and a regular evolution of the energy of fast deuterons—indicate their strong interconnection and the link with filamentary structure of the current flow.

Characteristics of closed currents and magnetic fields outside the dense pinch column in a plasma focus discharge

  • DOI: 10.1063/5.0010249
  • Odkaz: https://doi.org/10.1063/5.0010249
  • Pracoviště: Katedra fyziky
  • Anotace:
    This paper describes the structure of a higher extreme ultraviolet (XUV) emission and plasma density region which surrounds a pinched dense-plasma column. It is interpreted as a toroidal-like plasma formation, which is flowing by a closed current with poloidal and toroidal components upon its surface. This current produces a local magnetic field, which separates the external discharge current from the surface of the dense pinch column. We estimated the values of closed currents as well as magnetic- and plasma-pressures in this column and its surrounding on the basis of the measured distribution of interferometric fringes and intense XUV emission, recorded during the pinch stagnation phase. The considered layer forms the region in which the magnetic energy can be conserved, and during its decay, the acceleration of fast deuterons can take place.

Ion acceleration and neutron production in hybrid gas-puff z-pinches on the GIT-12 and HAWK generators

  • DOI: 10.1063/1.5132845
  • Odkaz: https://doi.org/10.1063/1.5132845
  • Pracoviště: Katedra fyziky
  • Anotace:
    Z- pinch experiments with a hybrid configuration of a deuterium gas puff have been carried out on the HAWK (NRL, Washington, DC) and GIT-12 (IHCE, Tomsk) pulsed power generators at 0.7 MA and 3 MA currents, respectively. On GIT-12, neutron yields reached an average value of 2 X 10(12) neutrons, and deuterons were accelerated up to an energy of 30 MeV. This was 50 times the ion energy provided by the generator driving voltage of 0.6 MV and the highest energy observed in z-pinches and dense plasma foci. To confirm these unique results independently on another device, we performed several experimental campaigns on the HAWK generator. Comparison of the experiments on GIT-12 and HAWK helped us to understand which parameters are essential for optimized neutron production. Since the HAWK generator is of a similar pulsed power architecture as GIT-12, the experiments on GIT-12 and HAWK are important for the study of how charged-particle acceleration scales with the current. (C) 2020 Author(s).

Scenario of a magnetic dynamo and magnetic reconnection in a plasma focus discharge

  • DOI: 10.1063/1.5133103
  • Odkaz: https://doi.org/10.1063/1.5133103
  • Pracoviště: Katedra fyziky
  • Anotace:
    The paper discusses a possible energy transformation that leads to the acceleration of fast ions and electrons. In plasma-focus discharges that occur during deuteriumfilling, which have a maximum current of about 1MA, the accelerated deuterons producefastfusion neutrons andfast electrons hard X-ray emissions. Their total energy, which is of the order of several kilojoules, can be delivered by the discharge through a magnetic dynamo and selforganization to the ordered plasma structures that are formed in a pinch during the several hundreds of nanoseconds of the pinch implosion, stagnation, and evolution of instabilities. This energy is finally released during the decay of the ordered plasma structures in the volume between the anode face and the umbrella front of the plasma and current sheath in the form of induced electric fields that accelerate fast electrons and ions.

Spatial distribution of ion emission in gas-puff z-pinches and dense plasma foci

  • DOI: 10.1088/1361-6587/ab6902
  • Odkaz: https://doi.org/10.1088/1361-6587/ab6902
  • Pracoviště: Katedra fyziky
  • Anotace:
    Mega-ampere dense plasma foci and deuterium gas-puff z-pinches can accelerate deuterons to multi-MeV energies. Diagnostic measurements of the properties of these ions provide information about ion acceleration in z-pinch plasmas. In particular, the results from ion pinhole cameras seem to be useful for the discussion of ion acceleration mechanisms. Recently, we have used various configurations of ion pinhole cameras in deuterium gas-puff experiments on the GIT-12 generator at the Institute of High Current Electronics in Tomsk and on the HAWK generator at the US Naval Research Laboratory in Washington. The stack of radiochromic films and CR-39 solid-state nuclear track detectors recorded deuterons with energies up to 30 MeV. From our ion diagnostics, we obtained the spatial distribution of the ion source and the ion-beam divergence during the ion emission. This ion-beam divergence was found to decrease with increasing deuteron energy. At 20 MeV, the divergence of each of the individual micro-beams that composed the ion source was on the order of 10 mrad. The deflection of each micro-beam due to the azimuthal magnetic and/or radial electric fields resulted in radial stripes observed by the beam-profile detectors. By analyzing the ion pinhole images, we found that the deuterons were emitted both from a central spot and from a ring-shaped region with a rather large diameter, on the order of 1 cm. The origin and particular diameter of this ring is attributed to the geometry of the electrodes and to the distribution of the current density before the disruption.

Acceleration of protons and deuterons up to 35 MeV and generation of 10(13) neutrons in a megaampere deuterium gas-puff z-pinch

  • DOI: 10.1088/1361-6587/aadc99
  • Odkaz: https://doi.org/10.1088/1361-6587/aadc99
  • Pracoviště: Katedra fyziky
  • Anotace:
    The acceleration of hydrogen ions up to 35 MeV is observed in the z-pinch experiments on the GIT-12 generator at a 3 MA current and 0.6 MV driving voltage. High ion energies are obtained with a novel configuration of a deuterium gas-puff z-pinch. In this configuration, a hollow cylindrical plasma shell is injected around an inner deuterium gas puff to form a homogeneous, uniformly conducting layer between electrodes at the initial phase of z-pinch implosion. The stable implosion at the velocity up to 650 km s(-1) is important to deliver more current onto the z-pinch axis. Magnetohydrodynamic instabilities become apparent first at stagnation. After the disruptive development of m = 0 instabilities, similar to 20 ns pulses of high-energy photons, neutrons, electrons, and ions are observed. The average neutron yield is 2 x 10(12). The ion emission is characterized by various diagnostic techniques including those based on the usage of neutron-producing samples. When a large neutron-producing sample is placed onto the axis below a cathode mesh, the neutron yield is increased up to (1.1 +/- 0.3) x 10(13). Considering a similar to 130 kJ energy input into z-pinch plasmas and magnetic field, this implies the neutron production efficiency of similar to 10(8) neutrons per one Joule of the z-pinch energy.

Evolution of a Pinch Column During the Acceleration of Fast Electrons and Deuterons in a Plasma-Focus Discharge

  • DOI: 10.1109/TPS.2018.2874288
  • Odkaz: https://doi.org/10.1109/TPS.2018.2874288
  • Pracoviště: Katedra fyziky
  • Anotace:
    Plasma in a pinch column, as produced by a plasma-focus discharge at the deuterium filling and the current intensity reaching 1 MA, was investigated at the total neutron yield reaching about 1010 per discharge. The use was made of neutron diagnostics, laser interferometry, soft X-ray measurements, optical emission spectroscopy, magnetic probes, as well as electron and ion measurements with the temporal, spatial, and energetic resolutions. The detailed studies showed the ordered toroidal, helical, and plasmoidal structures which could contain currents with poloidal and toroidal components and their associated magnetic fields. Their spontaneous transformations were explained by changes in a topology of magnetic field lines due to magnetic reconnections. A nonthermal acceleration of fast electrons and ions (producing hard X-rays and fusion neutrons, respectively) corresponded to: 1) the formation of plasmoids in the pinch column and 2) a decay of pinch constrictions and secondary plasmoids during the evolution of instabilities. A filamentary structure of the current flow could explain the high energy density and fast transformations of the magnetic energy into kinetic energy of electron and ion beams (reaching energy of hundreds of kiloelectronvolt). This paper summarizes the results obtained with the PF-1000 facility in 2009–2017, and describes the internal transformations in a dense plasma column during the evolution of MHD instabilities.

Evolution of the Pinched Column During Hard X-ray and Neutron Emission in a Dense Plasma Focus

  • DOI: 10.1007/s10894-018-0194-x
  • Odkaz: https://doi.org/10.1007/s10894-018-0194-x
  • Pracoviště: Katedra fyziky
  • Anotace:
    The paper summarizes important results of the recent experimental studies performed on the plasma-focus PF-1000 facility operated in Warsaw, Poland, mainly with the pure deuterium filling. Attention is focused on the evolution of toroidal and plasmoidal self-organized structures formed by internal closed currents inside the dense plasma column. The production of hard x-rays and neutrons corresponds with the formation and decay of plasmoids, in which charged particles can be accelerated effectively to high energies, during a release of the magnetic energy from current filaments of high energy density. It is noticed that the studies of laboratory fusion and cosmic plasmas deal with similar problems, e.g., the fast release of the magnetic energy in a form of high-energy charged particle beams.

Features of fast deuterons emitted from plasma focus discharges

  • DOI: 10.1063/1.5080974
  • Odkaz: https://doi.org/10.1063/1.5080974
  • Pracoviště: Katedra fyziky
  • Anotace:
    This paper presents the discussion concerning the characteristics of the fast deuterons which have energy above 30 keV and are recorded during high-current plasma-focus (PF) discharges, by means of PM-355 plastic track-detectors placed inside ion pinhole cameras. The fast deuterons evoke D-D fusion reactions, mainly by a beam-target mechanism. The distribution of the magnetic field, which influences the trajectories of the recorded deuterons, is discussed. It is found that the fast deuterons are produced in various local sources and their motion is strongly influenced by a circular symmetry of the local magnetic field, which increases their radial shift with a decrease in their energy. The sources of these deuterons are probably located inside the plasmoids and in some local regions of the ring-shaped plasma structures. These ring-structures can be formed outside the dense pinch column, up to a radius of 5 cm. Global magnetic fields, associated with the total current flow in the PF discharge, have a weaker influence. The observed radial shift of the recorded fast deuterons is interpreted as a result of their deflection by magnetic fields which have opposite orientations of the azimuthal components, associated with the currents flowing in directions towards and from the applied ion detectors. The local sources of the recorded fast deuterons correspond to filamentary structures, in which the stored magnetic energy (having the local high density) can be released in induced electric fields accelerating the deuterons during the magnetic reconnections.

Influence of an external additional magnetic field on the formation of a plasma column in a dense plasma focus

  • DOI: 10.1063/1.5094568
  • Odkaz: https://doi.org/10.1063/1.5094568
  • Pracoviště: Katedra fyziky
  • Anotace:
    This paper concerns the evolution of internal structures and the neutron production in plasma-focus discharges performed in the presence of a permanent magnet (placed inside the anode front) and within a residual magnetic field (after the removal of this magnet). The initial magnetic field generated by this magnet prevented: (i) the effective compression of a dense pinch column, (ii) the formation of plasma organized structures, and (iii) the evolution of plasma instabilities. The experimental results have shown an increase in the initial magnetic field due to a magnetic dynamo effect in the presence of the permanent magnet, as well as in a series of shots performed after its removal. It was observed that the appearance of plasmoidal structures is necessary for the emission of fusion neutrons. A characteristic quasicylindrical plasma layer of the radius corresponding to the plasma lobule tops, which might be identified with a ring region of the acceleration of fast deuterons, was also observed.

Axial compression of plasma structures in a plasma focus discharge

  • DOI: 10.1063/1.5033997
  • Odkaz: https://doi.org/10.1063/1.5033997
  • Pracoviště: Katedra fyziky
  • Anotace:
    The paper describes the behaviour of plasma within a MA plasma-focus with a novel electrode configuration, in which the anode and anti-anode were both equipped with conical tips. This configuration was applied to test the possibility of reducing the pinch axial dimensions during the radial compression of a current sheath. It made it possible to strengthen a dense plasma jet near the anode end, which ejected plasma into a bigger plasmoidal structure formed in the central pinch region. It did not allow forming an opposite anti-anode jet and stopped the axial motion of this structure. In plasma focus discharges with the deuterium filling, the decay of the anode jet and the corresponding plasmoid evolution were accompanied by the fusion-neutron production. Some results obtained with this configuration have also supported the hypothesis of the acceleration of fast electrons and ions at a release of the magnetic energy during magnetic reconnections in the organized dense plasma structures.

Characterization of fast deuterons involved in the production of fusion neutrons in a dense plasma focus

  • DOI: 10.1063/1.5012021
  • Odkaz: https://doi.org/10.1063/1.5012021
  • Pracoviště: Katedra fyziky
  • Anotace:
    This paper considers regions of a fast deuteron production in a correlation with an evolution of ordered structures inside a pinch column of a mega-ampere plasma focus discharge. Ion pinhole cameras equipped with plastic PM-355 track-detectors recorded fast deuterons escaping in the downstream and other directions (up to 60 to the z-axis). Time-integrated ion images made it possible to estimate sources of the deuteron acceleration at the known magnetic field and deuteron energy values. The images of the fast deuterons emitted in the solid angle ranging from 0 to 4 showed two forms: central spots and circular images. The spots of 1–2 cm in diameter were produced by deuterons from the central pinch regions. The circular-shaped images of a radius above 3 cm (or their parts) were formed by deuterons from the region surrounding the dense pinch column. The ion pinhole cameras placed at angles above 20 to the z-axis recorded the ion spots only, and the ring-images were missing. The central region of the deuteron acceleration could be associated mainly with plasmoids, and the circular images could be connected with ring-shaped regions of the radius corresponding to tops of the plasma lobules outside the dense pinch column. The deuteron tracks forming ring-shaped images of a smaller (0.5–1) cm radius could be produced by deflections of the fast deuterons, which were caused by a magnetic field inside the dense pinch column.

Investigation of Magnetic Fields in Z-Pinches via Multi-MeV Proton Deflectometry

  • DOI: 10.1109/TPS.2018.2874207
  • Odkaz: https://doi.org/10.1109/TPS.2018.2874207
  • Pracoviště: Katedra fyziky
  • Anotace:
    Proton deflectometry is a promising way for mapping electric and magnetic fields in high-density and high-temperature plasmas, where an application of the classical methods (B-dot probes, Faraday rotation, and Zeeman splitting) is limited. It is based on the detection of a multi-MeV proton beam deflected in examined B-fields. In the past years, it has been successfully utilized in laser-generated plasmas for E-field and B-field measurements. Using our numerical code, we investigate the capabilities of proton deflectometry as a diagnostic method of MA Z-pinches. We simulate proton trajectories propagating through typical Z-pinch B-fields in two fundamental experimental setups (radial and axial) in order to study synthetic images (deflectograms). We demonstrate where proton deflectometry might be beneficial for the Z-pinch research. We explain a formation of the key features of deflectograms, which give us information about a profile and strength of the Z-pinch B-fields. We introduce a BL parameter, denoting an effective B-field averaged along the deflected proton orbit and show its importance for the proton deflectometry.

Ion acceleration mechanism in mega-ampere gas-puff z-pinches

  • DOI: 10.1088/1367-2630/aac545
  • Odkaz: https://doi.org/10.1088/1367-2630/aac545
  • Pracoviště: Katedra fyziky
  • Anotace:
    Acceleration of high energy ions was observed in z-pinches and dense plasma foci as early as the 1950s. Even though many theories have been suggested, the ion acceleration mechanism remains a source of controversy. Recently, the experiments on the GIT-12 generator demonstrated acceleration of ions up to 30 MeV from a deuterium gas-puff z-pinch. High deuteron energies enable us to obtain unique information about spatial, spectral and temporal properties of accelerated ions. In particular, the off-axis ion emission from concentric circles of a similar to 1 cm diameter and the radial lines in an ion beam profile are germane for the discussion of acceleration mechanisms. The acceleration of 30 MeV deuterons can be explained by the fast increase of an impedance with a sub-nanosecond e-folding time. The high (> 10 Omega) impedance is attributed to a space-charge limited flow after the effective ejection of plasmas from m = 0 constrictions. Detailed knowledge of the ion acceleration mechanism is used with a neutron-producing catcher to increase neutron yields above 10^13 at a current. of. 2.7 MA.

Experimental research of neutron yield and spectrum from deuterium gas-puff z-pinch on the GIT-12 generator at current above 2 MA

  • DOI: 10.1088/1742-6596/830/1/012017
  • Odkaz: https://doi.org/10.1088/1742-6596/830/1/012017
  • Pracoviště: Katedra fyziky
  • Anotace:
    The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 10^12 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.

Filamentation in the pinched column of the dense plasma focus

  • DOI: 10.1063/1.4978558
  • Odkaz: https://doi.org/10.1063/1.4978558
  • Pracoviště: Katedra fyziky
  • Anotace:
    The paper describes the filamentary structure observed in the high-energy ultraviolet radiation for discharges performed at the hydrogen- or deuterium-filling and at the puffing of hydrogen, deuterium or helium, in a mega-ampere dense plasma-focus facility. The lifetime of this structure overcomes 50ns. These filaments connect the surface of a pinched column with internal plasmoids formed at different combinations of filling and puffing gases and they should transport some current and plasma. During all the investigated deuterium shots, the fusion-produced neutrons were recorded. Therefore, deuterons should be present in the region of their acceleration, independent of the applied puffing of the gas. Simultaneously with the observed filaments, inside the dense plasma column small plasma-balls of mm-dimensions were observed, which had a similar lifetime (longer than the relaxation time) and quasi-stationary positions in the discharge volume. The observed filaments and balls might be a manifestation of the (i) discrete spatial structure of the current flowing through and around the dense plasma column and (ii) transport of the plasma from external layers to the central region. Their formation and visualization were easier due to the application of air admixtures in the puffed gas. Published by AIP Publishing.

Increase in the neutron yield from a dense plasma-focus experiment performed with a conical tip placed in the centre of the anode end

  • DOI: 10.1063/1.4994097
  • Odkaz: https://doi.org/10.1063/1.4994097
  • Pracoviště: Katedra fyziky
  • Anotace:
    The paper describes the evolution of self-organized structures inside a pinched plasma column during the phase of the effective production of fusion neutrons, as observed in the mega-ampere plasma focus experiment performed with a conical tip placed in the centre of the anode face. In a comparison with the plane anode face configuration, the described anode shape facilitated transformations in the pinch column during the neutron production and increased the neutron yield several times. Simultaneously, it decreased the minimal diameter and the length of the pinched column, and it depressed the first neutron pulse. It also induced shorter pulses of X-rays and neutrons, which enabled the determination of a temporal difference between the emission of electron and deuteron beams. The fast electrons were produced mainly during a disruption of the pinch constriction, while the fast deuterons – during the formation and explosion of plasmoids. The paper also presents the temporal evolution of a current distribution in the plasmoid during the neutron production, as well as the appearance and stable positions of current filaments traces upon the surface of the conical anode tip.

Kinetic magnetization by fast electrons in laser-produced plasmas at sub-relativistic intensities

  • DOI: 10.1063/1.4995044
  • Odkaz: https://doi.org/10.1063/1.4995044
  • Pracoviště: Katedra fyziky
  • Anotace:
    The problem of spontaneous magnetic field generation with nanosecond laser pulses raises a series of fundamental questions, including the intrinsic magnetization mechanisms in laser-driven plasmas and the understanding of charge-discharge processes in the irradiated target. These two issues are tightly bound as the charge-discharge processes are defined by the currents, which have in turn a feedback by magnetic fields in the plasma. Using direct polaro-interferometric measurements and theoretical analysis, we show that at parameters related to the PALS laser system (1.315 mu m, 350 ps, and 10(16) W/cm(2)), fast electrons play a decisive role in the generation of magnetic fields in the laser-driven plasma. Spatial distributions of electric currents were calculated from the measured magnetic field and plasma density distributions. The obtained results revealed the characteristics of strong currents observed in capacitor-coil magnetic generation schemes and open a new approach to fundamental studies related to magnetized plasmas.

Neutron Spectrum Measured by Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch

  • DOI: 10.1109/TPS.2017.2763641
  • Odkaz: https://doi.org/10.1109/TPS.2017.2763641
  • Pracoviště: Katedra fyziky
  • Anotace:
    A set of neutron diagnostics including scintillation time-of-flight detectors, bubble detectors, and several kinds of threshold nuclear activation samples is used to obtain information about the yield and spectrum of the neutrons produced by a deuterium gas-puff z-pinch. The experiments are performed at a current of about 3 MA on the GIT-12 generator at the Institute of High Current Electronics of the Siberian Branch of Russian Academy of Sciences in Tomsk. The average neutron yield in the experiments in 2016 was 2.3 x 10¹² neutrons per single shot. Using the data obtained with the help of neutron activation diagnostics, the time-of-flight detectors have been absolutely calibrated and the broad energy spectrum of the produced neutrons was evaluated. By the calculations presented in this paper, due to the multi-MeV energies of deuterons generated in the pinch, up to 15% of the total neutron yield could be produced by nuclear reactions of deuterons with a stainless steel vacuum chamber and aluminum components of the diagnostic apparatus inside the chamber.

Transformation of the ordered internal structures during the acceleration of fast charged particles in a dense plasma focus

  • DOI: 10.1063/1.4991384
  • Odkaz: https://doi.org/10.1063/1.4991384
  • Pracoviště: Katedra fyziky
  • Anotace:
    The paper concerns important differences in the evolution of plasma column structures during the production of fusion neutrons in the first and subsequent neutron pulses, as observed for plasma focus discharges performed with the deuterium filling. The first neutron pulse, of a more isotropic distribution, is usually produced during the formation of the first big plasmoid. The next neutron pulses can be generated by the fast deuterons moving dominantly in the downstream direction, at the instants of a disruption of the pinch constriction, when other plasmoids are formed during the constriction evolution. In both cases, the fusion neutrons are produced by a beam-target mechanism, and the acceleration of fast electron- and deuteron-beams can be interpreted by transformation and decay of the magnetic field associated with a filamentary structure of the current flow in the plasmoid.

Comprehensive investigation of laser energy transport to a massive planar targets with femtosecond polaro-interferometry

  • Pracoviště: Katedra fyziky
  • Anotace:
    The experiments were realized on Prague Asterix Laser System (PALS) using the first harmonic of the iodine laser beam with the energy in range of 100- 500 J and the pulse duration of 350 ps. The plasma was created by the irradiation of the bare and plastic coated Cu massive planar targets using both the linear and the circular polarized laser beam which was focused to the minimum focal spot radius of RL=50 um. The primary goal of the current project is to understand the interrelation of spontaneous magnetic field (SMF) creation and fast electron generation in laser plasma produced from planar targets. Two-channel polarointerferometer and the crater volume measurements were applied as the main diagnostics to investigate SMF and efficiency of laser energy transfer to the target. The differences in the fast electron production due to the polarization of the laser beam were monitored by 2D imaging of the Cu K-alpha emission source in the irradiated target. The measured distributions of the SMF during the interaction of the laser pulse with the ablative plasma clearly show that the SMF amplitude is higher in the case of the linearly polarized beam. The data on the efficiency of laser energy transport into the massive target was concluded using the ratio of measured values of total number of thermal electrons of ablated plasma and crater volume. Slightly higher fast electron emission was observed at the circular polarization of the laser beam incident on both bare and plastic coated Cu targets. As an additional diagnostic, the measurements of the total current flowing through the target were carried out by means of the current probe and the found values were compared with results from the SMF measurements.

Deuterium z-pinch as a powerful source of multi-MeV ions and neutrons for advanced applications

  • DOI: 10.1063/1.4942944
  • Odkaz: https://doi.org/10.1063/1.4942944
  • Pracoviště: Katedra fyziky
  • Anotace:
    A novel configuration of a deuterium z-pinch has been used to generate a nanosecond pulse of fast ions and neutrons. At a 3 MA current, the peak neutron yield of (3.6 +/- 0.5) x 10(12) was emitted within 20 ns implying the production rate of 10 20 neutrons/s. High neutron yields resulted from the magnetization of MeV deuterons inside plasmas. Whereas deuterons were trapped in the radial direction, a lot of fast ions escaped the z-pinch along the z-axis. A large number of >25MeV ions were emitted into a 250 mrad cone. The cut-off energy of broad energy spectra of hydrogen ions approached 40 MeV. The total number of >1 MeV and >25 MeV deuterons were 10(16) and 10(13), respectively. Utilizing these ions offers a real possibility of various applications, including the increase of neutron yields or the production of short-lived isotopes in samples placed in ion paths. On the basis of our experiments with various samples, we concluded that a single shot would have been sufficient to obtain GBq positron activity of 13 N isotopes via the C-12(d, n)(13) N reaction. Furthermore, the first z-pinch generated neutron radiograph produced by approximate to 20 ns pulses is presented in this paper. (C) 2016 AIP Publishing LLC.

Evolution of the small ball-like structures in the plasma focus discharge

  • DOI: 10.1515/nuka-2016-0027
  • Odkaz: https://doi.org/10.1515/nuka-2016-0027
  • Pracoviště: Katedra fyziky
  • Anotace:
    The experiments were carried out in the PF-1000 plasma-focus device at the maximum current reaching about 2 MA, at the deuterium or neon filling and with deuterium injected from a gas-puff nozzle placed on the axis of the anode face. Ball-like structures of diameters of 1-12 mm were identified in interferometric and XUV pinhole camera frames. We made the statistical description of their parameters. A lifetime of the ball-like structures was in the range from 30 to 210 ns, and in some cases even more. These structures appeared mostly at the surface of the imploding plasma shell and they did not change their position in relation to the anode end. During the evolution of these structures, interferometric fringes were observed near the surfaces of the structures only, and their internal parts were initially chaotic (without noticeable) fringes. Subsequently the number of interferometric fringes increased (the internal 'chaotic' area was filled with fringes too) and later on it decreased. The radii of the ball-like structures were mostly increasing during their existence. The maximum electron density reached the value of 10(24) to 10(25) m(-3). The ball-like structures decayed by absorption inside the expanded pinch column and/or gradually expired in rare plasma outside of the dense plasma column.

Influence of the Al wire placed in the anode axis on the transformation of the deuterium plasma column in the plasma focus discharge

  • DOI: 10.1063/1.4953569
  • Odkaz: https://doi.org/10.1063/1.4953569
  • Pracoviště: Katedra fyziky
  • Anotace:
    In this paper, we describe the influence of an Al wire of 270 lm in diameter placed along the anode axis on the transformation of the deuterium pinch column in a megaampere (MA) plasma focus device. The evolution of the pinched column and of the wire corona was investigated by means of the multiframe interferometry, neutron and X-ray diagnostics. The wire corona did not influence considerably on the evolution of dense plasma structures and neutron production, but it increased the plasma density and consequently, the currents around its surface. The distribution of the closed internal currents (ranging hundreds of kA) and associated magnetic fields amounting to 5 T were also estimated in the dense plasma column and in plasmoidal structures at the near-equilibrium state. The description is based on the balance of the plasma pressure and the pressure of the internal poloidal and toroidal current components compressed by the external pinched column. The dominant number of fusion deuterium-deuterium (D-D) neutrons is produced during the evolution of instabilities, when theuninterrupted wire corona (containing deuterium) connects the dense structures of the pinch, and it did not allow the formation of a constriction of the sub-millimeter diameter.

Interferometry and x-ray diagnostics of pinched helium plasma in a dense plasma focus with an Al-wire on the axis

  • DOI: 10.1063/1.4968227
  • Odkaz: https://doi.org/10.1063/1.4968227
  • Pracoviště: Katedra fyziky
  • Anotace:
    The paper describes the evolution of the ordered dense toroidal- and plasmoidal-like structures in a pinch column and the hard X-ray emission from mega-ampere dense plasma-focus discharges performed at the helium (He) filling. Some shots were carried out with an Al-wire of 270 lm in diameter, which was placed along the z-axis in the front of the anode face. The evolution of the considered structures was investigated by means of a multi-frame laser interferometer system as well as the X-ray diagnostics, and it was compared with their evolution observed earlier at the deuterium (D2) filling. In He-plasma, the ions had a higher mass and Z-number, and at the same initial filling pressure, the velocity of plasma transformations was decreased, but the stability of the investigated structures, as well as the self-generated azimuthal current component and the soft X-ray radiation were increased. The distribution of the plasma electron density (determined from the interferometric images) made it possible to estimate closed currents during the quasi-stationary phases. It was found that the internal toroidal- and plasmoidal-currents reached the level of hundreds of kA. The plasma corona around the Al-wire (penetrating through the internal structures) impeded the formation of a small diameter of the pinch constriction, but it did not prevent the production of fast electron beams with energies above 100 keV, similar to those observed at the D2-filling.

The evolution of the plasmoidal structure in the pinched column in plasma focus discharge

  • DOI: 10.1088/0741-3335/58/4/045005
  • Odkaz: https://doi.org/10.1088/0741-3335/58/4/045005
  • Pracoviště: Katedra fyziky
  • Anotace:
    In this paper, a description is provided of the evolution of the dense spherical-like structures— plasmoids—formed in the pinched column of the dense plasma focus at the current of 1 MA at the final phase of implosion of the deuterium plasma sheath and at the phase of evolution of instabilities both at the time of HXR and neutron production. At the stratification of the plasma column, the plasma injected to the dense structures from the axially neighboring regions forms small turbulences which increase first the toroidal structures, and finally generates a nonchaotic current plasmoidal structure with central maximal density. This spontaneous evolution supports the hypothesis of the spheromak-like model of the plasmoid and its sub-millimeter analogy, high-energy spot. These spots, also called nodules formed in the filamentary structure of the current can be a source of the energy capable of accelerating the fast charged particles.

The influence of the nitrogen admixture on the evolution of a deuterium pinch column

  • DOI: 10.1063/1.4960825
  • Odkaz: https://doi.org/10.1063/1.4960825
  • Pracoviště: Katedra fyziky
  • Anotace:
    The application of a mixture of nitrogen and deuterium for the gas-puffing along the anode axis in deuterium plasma-focus discharges, as carried out at megaampere-level currents, enabled observations of the filamentary structure, and the decrease in the transformation velocity of the plasma column to be performed. It made possible to investigate the instability evolution during the production of hard X-rays and fast neutrons in more detail. The constriction of a plasma column transforms itself during the final phase of the compression into one or more small dense plasmoid-like structures which are separated by narrow necks. During the next phase, these structures start to decay by an expansion, in which a part of the plasma volume maintains its compactness. This evolution is explained by an increase and later decrease in the internal poloidal current component by reconnections of the associated magnetic lines, which are responsible for the acceleration of electron and ion beams.

Efficient generation of fast neutrons by magnetized deuterons in an optimized deuterium gas-puff z-pinch

  • DOI: 10.1088/0741-3335/57/4/044005
  • Odkaz: https://doi.org/10.1088/0741-3335/57/4/044005
  • Pracoviště: Katedra fyziky
  • Anotace:
    Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 ug/cm whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 mu g/cm. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Omega and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail. Neutron yields reached 3.6x10(12) at a 2.7 MA current. A high neutron production efficiency of 6x10(7) neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.

Existence of a return direction for plasma escaping from a pinched column in a plasma focus discharge

  • DOI: 10.1063/1.4921248
  • Odkaz: https://doi.org/10.1063/1.4921248
  • Pracoviště: Katedra fyziky
  • Anotace:
    The use of multi-frame interferometry used on the PF-1000 device with the deuterium filling showed the existence of a return motion of the top of several lobules of the pinched column formed at the pinched plasma column. This phenomenon was observed in the presence of an over-optimal mass in front of the anode, which depressed the intensity of the implosion and the smooth surface of the pinched plasma column. The observed evolution was explored through the use of closed poloidal currents transmitted outside the pinched plasma. This interpretation complements the scenario of the closed currents flowing within the structures inside the pinched column, which has been published recently on the basis of observations from interferometry, neutron, and magnetic probe diagnostics on this device.

Investigation of compression of puffing neon by deuterium current and plasma sheath in plasma focus discharge

  • DOI: 10.1063/1.4922483
  • Odkaz: https://doi.org/10.1063/1.4922483
  • Pracoviště: Katedra fyziky
  • Anotace:
    This paper presents the results of the research of the influence of compressed neon, injected by the gas-puff nozzle in front of the anode axis by the deuterium current and plasma sheath on the evolution of the pinch, and neutron production at the current of 2 MA. The intense soft X-ray emission shows the presence of neon in the central region of the pinch. During the implosion and stopping of the plasma sheath, the deuterium plasma penetrates into the internal neon layer. The total neutron yield of 1010–1011 has a similar level as in the pure deuterium shots. The neutron and hard X-ray pulses from fusion D-D reaction are as well emitted both in the phase of the stopping implosion and during the evolution of instabilities at the transformation of plasmoidal structures and constrictions composed in this configuration from both gases. The fast deuterons can be accelerated at the decay of magnetic field of the current filaments in these structures.

MCNP calculations of neutron emission anisotropy caused by the GIT-12 hardware

  • DOI: 10.1515/nuka-2015-0064
  • Odkaz: https://doi.org/10.1515/nuka-2015-0064
  • Pracoviště: Katedra fyziky
  • Anotace:
    The MCNP6 and MCNPX calculations for the GIT-12 device in Tomsk were performed to determine the influence of the gas-puff hardware on the neutron emission anisotropy and the neutron scattering rate. A monoenergetic 2.45 MeV neutron source and F1 and F6 tallies were declared in the simulation input. A comparison between MCNP results and the measured data was made. Differences between MCNPX and MCNP6 output data were investigated. In the experiment, two nTOF scintillation detectors with the Bicron BC-408 scintillator were used to measure the neutron waveform. Four bubble BD-PND detectors were used to estimate the amount of neutrons in different places around the neutron source.

Photoionized plasmas in laboratory: a connection to astrophysics and planetary sciences

  • Autoři: Bartnik, A., Pisarczyk, T., Wachulak, P., Chodukowski, T., Ing. Balžima Cikhardtová, Pína, L.
  • Publikace: EUV and X-ray Optics: Synergy between Laboratory and Space IV. Bellingham (stát Washington): SPIE, 2015. ISSN 0277-786X. ISBN 978-1-62841-631-2.
  • Rok: 2015
  • DOI: 10.1117/12.2182032
  • Odkaz: https://doi.org/10.1117/12.2182032
  • Pracoviště: Katedra fyziky
  • Anotace:
    In this work photoionized plasmas were created by irradiation of atomic and molecular gases by soft X-ray and extreme ultraviolet intense radiation pulses. Two different laser-produced plasma sources, employing a low energy Nd:YAG laser system (NL 129) and a high energy iodine laser system (PALS), were used for creation of photoionized plasmas. In both cases the SXR/EUV beam irradiated the gas stream, injected into a vacuum chamber synchronously with the radiation pulse. Radiation spectra, measured for photoionized plasmas produced in Ne and Ar gases, are dominated by L-shell emission lines except the Ne plasma produced using the high energy system where K-shell emission dominates. Additionally electron density measurements were performed by laser interferometry employing a femtosecond laser system synchronized with the irradiating system. Maximum electron density for Ne plasma, induced using the high energy system, reached 2.10(18)cm(-3). In case of employing the low energy system a detection limit was too high for interferometric measurements, thus only an upper estimation for electron density could be made.

Puffing Deuterium Compressed by a Neon Plasma Sheath at the Initial Poloidal Magnetic Field in Plasma Focus Discharge

  • DOI: 10.1109/TPS.2015.2431858
  • Odkaz: https://doi.org/10.1109/TPS.2015.2431858
  • Pracoviště: Katedra fyziky
  • Anotace:
    This paper presents the results of the experimental study of the influence of the applied poloidal magnetic field on the transformation of the plasma column formed by the compression of (10 ± 3)-μg/cm deuterium injected by the gas-puff nozzle in front of the anode axis by the neon plasma sheath of (50 ± 10) μg/cm at a current of 2 MA. The permanent magnet with an initial induction of 20–40 mT placed inside the anode: 1) increased the diameter of the pinch and of the stagnation; 2) depressed the evolution of instabilities and formation of the dense structures in the column; 3) delayed the dip of the current derivative in time (and start of the hard X-ray and neutron emission) 200–300 ns after the first peak of the soft X-ray emission (and the pinch with a minimal diameter near the anode); and 4) decreased the total neutron yield to 10–20%. These results were interpreted in terms of the increase in the repulsive pressure of the compressed poloidal magnetic field, which ncreases the stabilizing helicity of the discharge current. The transformations are independent of the polarity of the magnet.

Temporal distribution of linear densities of the plasma column in a plasma focus discharge

  • DOI: 10.1515/nuka-2015-0065
  • Odkaz: https://doi.org/10.1515/nuka-2015-0065
  • Pracoviště: Katedra fyziky
  • Anotace:
    Experiments were carried out on the PF-1000 plasma focus device, with a deuterium filling and with deuterium puffing from a gas-puff nozzle placed on the axis of the anode face. The current was reaching 2 MA. 15 interferometric frames from one shot were recorded with a Nd:YLF laser and a Mach-Zehnder interferometer, with 10-20 ns delay between the frames. As a result, the temporal and spatial distribution of the linear densities and the radial and axial velocities of the moving of plasma in the dense plasma column could be estimated.

Filamentary structure of plasma produced by compression of puffing deuterium by deuterium or neon plasma sheath on plasma-focus discharge

  • DOI: 10.1063/1.4903906
  • Odkaz: https://doi.org/10.1063/1.4903906
  • Pracoviště: Katedra fyziky
  • Anotace:
    The present experiments were performed on the PF-1000 plasma focus device at a current of 2 MA with the deuterium injected from the gas-puff placed in the axis of the anode face. The XUV frames showed, in contrast with the interferograms, the fine structure: filaments and spots up to 1mm diameter. In the deuterium filling, the short filaments are registered mainly in the region of the internal plasmoidal structures and their number correlates with the intensity of neutron production. The longer filamentary structure was recorded close to the anode after the constriction decay. The long curve-like filaments with spots were registered in the big bubble formed after the pinch phase in the head of the umbrella shape of the plasma sheath. Filaments can indicate the filamentary structure of the current in the pinch. Together with the filaments, small compact balls a few mm in diameter were registered by both interferometry and XUV frame pictures. They emerge out of the dense column and their life-time can be greater than hundreds of ns.

Influence of an external magnetic field on the dynamics of a modified plasma focus

  • DOI: 10.1088/0031-8949/2014/T161/014042
  • Odkaz: https://doi.org/10.1088/0031-8949/2014/T161/014042
  • Pracoviště: Katedra fyziky
  • Anotace:
    The stability of a plasma column and the evolution of discharges are strongly dependent on the axial magnetic field. Internal axial and radial components of the magnetic field are formed at high current discharges naturally, but they can be also produced artificially by auxiliary coils or permanent magnets. The PFZ-200 facility was modified for the experiments with an external axial magnetic field. On this facility, an anti-electrode was placed along the z-axis in front of the anode. The auxiliary coils or permanent magnets generating the axial magnetic field were placed inside the anode and anti-electrode. Using micro-channel plate diagnostics, the stability of the plasma column at an axial magnetic field was studied. At the discharges in deuterium gas, the neutron production and the generation of hard x-rays were diagnosed with the scintillation detectors.

Measurement of the Target Current and EMP on Terawatt Laser System PALS

  • Pracoviště: Katedra fyziky
  • Anotace:
    The experiments are performed at high-power photodissociation iodine laser (1.315 μm, E=<1 kJ, t = 400 ps, I=6x10E16 W/cm2) at thePALSResearchCenterinPrague.During interaction of a focused intensive laser pulse with a solid target fast electrons are escaping and the target becomes charged. This charge can be neutralized by current flowing throw the target holder to the ground. The current with large time derivation, which is related to the laser pulse shape and to the inductance of the grounding circuit, generates a electromagnetic pulse in radio or microwave frequency band. Because the interaction chamber is usually equipped by a glass windows, insulators for galvanic separation, cables and so on, the electromagnetic pulse (EMP) passes out from the interaction chamber. At high-power laser facilities the EMP disturbs electrical signals, causes incorrect work of diagnostics, computers or control equipment. The study of target currents and EMP is important for design of all diagnostic instruments and projects of the large laser systems.

Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS

  • DOI: 10.1063/1.4898016
  • Odkaz: https://doi.org/10.1063/1.4898016
  • Pracoviště: Katedra fyziky
  • Anotace:
    Measurements of the return-current flowing through a solid target irradiated with the sub-nanosecond kJ-class Prague Asterix Laser System is reported. A new inductive target probe was developed which allows us measuring the target current derivative in a kA/ns range. The dependences of the target current on the laser pulse energy for cooper, graphite, and polyethylene targets are reported. The experiment shows that the target current is proportional to the deposited laser energy and is strongly affected by the shot-to-shot fluctuations. The corresponding maximum target charge exceeded a value of 10 μC. A return-current dependence of the electromagnetic pulse produced by the laser-target interaction is presented.

Neutron production from puffing deuterium in plasma focus device

  • DOI: 10.1063/1.4892551
  • Odkaz: https://doi.org/10.1063/1.4892551
  • Pracoviště: Katedra fyziky
  • Anotace:
    The current research has continued on the PF-1000 plasma focus device at the current of 2 MA by comparison of the shots with and without injected deuterium. The increase of the total neutron yield at the level of 1010–1011 per shot was achieved after the compression of about 10 lg/cm of the deuterium from the gas-valve by about 46 lg/cm of the neon or deuterium plasma sheath. It increases five times at the decrease of the puffing deuterium mass to one-half. In shots with neon in the chamber and with puffing deuterium, a considerable decrease was confirmed of the soft X-ray emission in comparison with shots without deuterium injection. This decrease can be explained by the absence of the neon in the region of the compressed and hot plasma. The deuterium plasma from the gas-puff should then be confined in the internal structures both in the phase of implosion as well as during their formation and transformation. In shots with puffing deuterium, the evolution of instabilities in the plasma column was suppressed. The deuterium plasma has a higher conductance and better ability to form expressive and dense plasmoids and to transport the internal current in comparison with neon plasma. Neutrons were produced both at the initial phase of stagnation, as well as at a later time at the evolution of the constrictions and dense plasmoids. VC 2014 AIP Publishing LLC.

Za stránku zodpovídá: Ing. Mgr. Radovan Suk