Lidé

Ing. Martin Šrámek

Všechny publikace

MRS Drone: A Modular Platform for Real-World Deployment of Aerial Multi-Robot Systems

  • DOI: 10.1007/s10846-023-01879-2
  • Odkaz: https://doi.org/10.1007/s10846-023-01879-2
  • Pracoviště: Multirobotické systémy
  • Anotace:
    This paper presents a modular autonomous Unmanned Aerial Vehicle (UAV) platform called the Multi-robot System (MRS) Drone that can be used in a large range of indoor and outdoor applications. The MRS Drone features unique modularity changes in actuators, frames, and sensory configuration. As the name suggests, the platform is specially tailored for deployment within a MRS group. The MRS Drone contributes to the state-of-the-art of UAV platforms by allowing smooth real-world deployment of multiple aerial robots, as well as by outperforming other platforms with its modularity. For real-world multi-robot deployment in various applications, the platform is easy to both assemble and modify. Moreover, it is accompanied by a realistic simulator to enable safe pre-flight testing and a smooth transition to complex real-world experiments. In this manuscript, we present mechanical and electrical designs, software architecture, and technical specifications to build a fully autonomous multi UAV system. Finally, we demonstrate the full capabilities and the unique modularity of the MRS Drone in various real-world applications that required a diverse range of platform configurations.

Effect of Active and Passive Protective Soft Skins on Collision Forces in Human-robot Collaboration

  • DOI: 10.1016/j.rcim.2022.102363
  • Odkaz: https://doi.org/10.1016/j.rcim.2022.102363
  • Pracoviště: Vidění pro roboty a autonomní systémy
  • Anotace:
    Soft electronic skins are one of the means to turn a classical industrial manipulator into a collaborative robot. For manipulators that are already fit for physical human–robot collaboration, soft skins can make them even safer. In this work, we study the after impact behavior of two collaborative manipulators (UR10e and KUKA LBR iiwa) and one classical industrial manipulator (KUKA Cybertech), in the presence or absence of an industrial protective skin (AIRSKIN). In addition, we isolate the effects of the passive padding and the active contribution of the sensor to robot reaction. We present a total of 2250 collision measurements and study the impact force, contact duration, clamping force, and impulse. This collected dataset is publicly available. We summarize our results as follows. For transient collisions, the passive skin properties lowered the impact forces by about 40 %. During quasi-static contact, the effect of skin covers – active or passive – cannot be isolated from the collision detection and reaction by the collaborative robots. Important effects of the stop categories triggered by the active protective skin were found. We systematically compare the different settings and compare the empirically established safe velocities with prescriptions by the ISO/TS 15066. In some cases, up to the quadruple of the ISO/TS 15066 prescribed velocity can comply with the impact force limits and thus be considered safe. We propose an extension of the formulas relating impact force and permissible velocity that take into account the stiffness and compressible thickness of the protective cover, leading to better predictions of the collision forces. At the same time, this work emphasizes the need for in situ measurements as all the factors we studied – presence of active/passive skin, safety stop settings, robot collision reaction, impact direction, and, of course, velocity – have effects on the force evolution after impact.

Za stránku zodpovídá: Ing. Mgr. Radovan Suk