Lidé

Ing. Petr Štibinger

Všechny publikace

MRS Modular UAV Hardware Platforms for Supporting Research in Real-World Outdoor and Indoor Environments

  • DOI: 10.1109/ICUAS54217.2022.9836083
  • Odkaz: https://doi.org/10.1109/ICUAS54217.2022.9836083
  • Pracoviště: Multirobotické systémy
  • Anotace:
    This paper presents a family of autonomous Unmanned Aerial Vehicles (UAVs) platforms designed for a diverse range of indoor and outdoor applications. The proposed UAV design is highly modular in terms of used actuators, sensor configurations, and even UAV frames. This allows to achieve, with minimal effort, a proper experimental setup for single, as well as, multi-robot scenarios. Presented platforms are intended to facilitate the transition from simulations, and simplified laboratory experiments, into the deployment of aerial robots into uncertain and hard-to-model real-world conditions. We present mechanical designs, electric configurations, and dynamic models of the UAVs, followed by numerous recommendations and technical details required for building such a fully autonomous UAV system for experimental verification of scientific achievements. To show strength and high variability of the proposed system, we present results of tens of completely different real-robot experiments in various environments using distinct actuator and sensory configurations.

Gamma Radiation Source Localization for Micro Aerial Vehicles with a Miniature Single-Detector Compton Event Camera

  • DOI: 10.1109/ICUAS51884.2021.9476766
  • Odkaz: https://doi.org/10.1109/ICUAS51884.2021.9476766
  • Pracoviště: Multirobotické systémy
  • Anotace:
    A novel method for localization and estimation of compact sources of gamma radiation for Micro Aerial Vehicles (MAVs) is presented in this paper. The method is developed for a novel single-detector Compton camera, developed by the authors. The detector is extremely small and weighs only 40 g, which opens the possibility for use on sub-1 kg class of drones. The Compton camera uses the MiniPIX TPX3 CdTe event camera to measure Compton scattering products of incoming high-energy gamma photons. The 3D position and the sub-nanosecond time delay of the measured scattering products are used to reconstruct sets of possible directions to the source. The proposed method utilizes a filter for fusing the measurements and estimating the radiation source position during the flight. The computations are executed in real-time onboard and allow integration of the detector info into a fully-autonomous system. Moreover, the real-time nature of the estimator potentially allows estimating states of a moving radiation source. The proposed method was validated in simulations and demonstrated in a real-world experiment with a Cs137 radiation source. The approach can localize a gamma source without estimating the gradient or contours of radiation intensity, which opens possibilities for localizing sources in a cluttered and urban environment.

Mobile Manipulator for Autonomous Localization, Grasping and Precise Placement of Construction Material in a Semi-structured Environment

  • DOI: 10.1109/LRA.2021.3061377
  • Odkaz: https://doi.org/10.1109/LRA.2021.3061377
  • Pracoviště: Katedra počítačů, Centrum umělé inteligence, Multirobotické systémy
  • Anotace:
    Mobile manipulators have the potential to revolutionize modern agriculture, logistics and manufacturing. In this work, we present the design of a ground-based mobile manipulator for automated structure assembly. The proposed system is capable of autonomous localization, grasping, transportation and deployment of construction material in a semi-structured environment. Special effort was put into making the system invariant to lighting changes, and not reliant on external positioning systems. Therefore, the presented system is self-contained and capable of operating in outdoor and indoor conditions alike. Finally, we present means to extend the perceptive radius of the vehicle by using it in cooperation with an autonomous drone, which provides aerial reconnaissance. Performance of the proposed system has been evaluated in a series of experiments conducted in real-world conditions.

Localization of Ionizing Radiation Sources by Cooperating Micro Aerial Vehicles With Pixel Detectors in Real-Time

  • DOI: 10.1109/LRA.2020.2978456
  • Odkaz: https://doi.org/10.1109/LRA.2020.2978456
  • Pracoviště: Multirobotické systémy
  • Anotace:
    We provide a complex software package allowing the user to deploy multiple ionizing radiation sources and detectors modeled after the Timepix miniature pixel detector. The software is provided to the community as open-source, and allows preliminary testing and method development even without a pixel detector or radiation sources. Our simulation model utilizes ray-tracing and Monte Carlo methods to resolve interactions of ionizing radiation with the detector, obstacles and the atmosphere. An open-source implementation is provided as a plugin for Gazebo, a simulator popular within the robotics community. The plugin is capable of simulating radiation sources with activities in the order of GBq1 in real-time with a conventional PC. We also provide a ROS interface, which allows full integration of the Timepix pixel detector into a robotic system. The credibility and the precision of the simulator plugin were confirmed via a real-world experiment with a micro aerial vehicle (MAV) equipped with a Timepix detector mapping the radiation intensity of an Am-241 sample. Finally, we present a method for cooperative localization of a source of ionizing radiation by a group of autonomous MAVs in an environment with obstacles.

Timepix Radiation Detector for Autonomous Radiation Localization and Mapping by Micro Unmanned Vehicles

  • DOI: 10.1109/IROS40897.2019.8968514
  • Odkaz: https://doi.org/10.1109/IROS40897.2019.8968514
  • Pracoviště: Multirobotické systémy
  • Anotace:
    A system for measuring radiation intensity and for radiation mapping by a micro unmanned robot using the Timepix detector is presented in this paper. Timepix detectors are extremely small, but powerful 14x14 mm, 256x256 px CMOS hybrid pixel detectors, capable of measuring ionizing alpha, beta, gamma radiation, and heaving ions. The detectors, developed at CERN, produce an image free of any digital noise thanks to per-pixel calibration and signal digitization. Traces of individual ionizing particles passing through the sensors can be resolved in the detector images. Particle type and energy estimates can be extracted automatically using machine learning algorithms. This opens unique possibilities in the task of flexible radiation detection by very small unmanned robotic platforms. The detectors are well suited for the use of mobile robots thanks to their small size, lightweight, and minimal power consumption. This sensor is especially appealing for micro aerial vehicles due to their high maneuverability, which can increase the range and resolution of such novel sensory system. We present a ROS-based readout software and real-time image processing pipeline and review options for 3-D localization of radiation sources using pixel detectors. The provided software supports off-the-shelf FITPix, USB Lite readout electronics with Timepix detectors.

Za stránku zodpovídá: Ing. Mgr. Radovan Suk