Lidé

Ing. Michal Špaček

Všechny publikace

Implementation of a Time-to-Digital Converter Inside FPGA

  • DOI: 10.1109/IDAACS58523.2023.10348931
  • Odkaz: https://doi.org/10.1109/IDAACS58523.2023.10348931
  • Pracoviště: Katedra měření
  • Anotace:
    This paper is focused on the implementation of a Time-to-Digital Converter (TDC) inside an FPGA circuit aimed at a specific application in the field of comparison of two time scales maintained by primary time standards (atomic clocks). The design requirements of the TDC were tailored to meet the needs of this intended use. That means there is a need for a wide measuring range of hundreds of milliseconds with time resolution as best as possible (smaller than 10 ps). Commercially-available TDCs on the market do not fulfil above mentioned requirements [2]. The implemented TDC utilizes a well-known combination of a delay line and a counter, which provides excellent resolution and a wide measuring range. We have selected FPGA type Cyclone V with 28 nm manufacturing technology to develop the TDC. Thanks to the specialized usage of the FPGA adders as a delay line and manufacturing technology of the used FPGA, we obtained the TDC with a resulting resolution of 8.6 ps. The significant advantages of this solution are flexibility, scalability, simple utilization into any FPGA system and availability to tune measuring range and input control interface based on specific needs.

National Infrastructure for Dissemination of Precise Time and Ultra-stable Optical Frequency also Aiming to Connect Quantum Sources - CITAF

  • Autoři: Vojtěch, J., Smotlacha, V., Havlis, O., Vohnout, R., Ing. Michal Špaček, Novák, T., Andriantsarazo, E., Šlapák, M., Altmannová, L., Velc, R., Kuna, A., doc. Ing. Jaroslav Roztočil, CSc.,
  • Publikace: Proc. SPIE 12570, Quantum Optics and Photon Counting. Bellingham (stát Washington): SPIE, 2023. Proceedings of SPIE. vol. 12570. ISSN 0277-786X. ISBN 978-1-5106-6260-5.
  • Rok: 2023
  • DOI: 10.1117/12.2665497
  • Odkaz: https://doi.org/10.1117/12.2665497
  • Pracoviště: Katedra měření
  • Anotace:
    There has been an increased focus on precise time and frequency transmission dissemination at a national and international level recently. We would like to present the situation in the Czech Republic, our strategy, approach, and our experience with a non-commercial, cost-effective solution that utilizes shared optical networks. The presented solution provides accurate time and stable frequency at a lower operational cost, utilizing the shared spectrum of the CESNET3 network infrastructure. We are committed to future developments and upgrades that will include the next wavelength bands and geographic extensions. Additionally, we have implemented bidirectional dark channels on various wavebands, which utilize shared leased fibers and offer bidirectional compensation for fiber losses. However, operating precise time and frequency requires a single path with bidirectional amplification performed by optical amplifiers, which are sensitive to feedback from the fiber line induced by back-scattering, and reflections, and which can cause unwanted oscillations. We have addressed this issue by carefully solving the interference with parallel data transmissions. In summary, we have implemented a cost-effective solution for precise time and frequency dissemination in the Czech Republic, which utilizes shared optical networks. We are committed to future developments, and we are also part of a consortium that plans to realize a Pan-European network to offer time and frequency services to a broad range of users.

System for continuous evaluation of optical path asymmetry

  • Autoři: Ing. Michal Špaček, Vojtěch, J., doc. Ing. Jaroslav Roztočil, CSc.,
  • Publikace: Proc. SPIE 12686, Infrared Remote Sensing and Instrumentation XXXI. Bellingham (stát Washington): SPIE, 2023. Proceedings of SPIE. vol. 12686. ISSN 1996-756X. ISBN 978-1-5106-6587-3.
  • Rok: 2023
  • DOI: 10.1117/12.2678936
  • Odkaz: https://doi.org/10.1117/12.2678936
  • Pracoviště: Katedra měření
  • Anotace:
    Precise time and stable radio frequency dissemination is becoming standard application in optical networks. The White Rabbit system is commonly used for this purpose to support applications that require precise time and a stable frequency signal. Optical fibers are preferred for distributing the precise time and frequency signal in this system. To achieve best results, i.e. determine absolute offsets, it is necessary to know the asymmetry of the optical transmission path in which the system is deployed. We developed a device based on a MEMS optical switch that measures the delay of the optical path in both the forward and reverse directions. These measurements are used to continuously evaluate changes in the asymmetry of the transmission path, and the resulting asymmetry can be used to calibrate the time transfer system.

Towards shared fiber dissemination infrastructure for precise time, coherent optical frequency, and entanglement transfers with sensing option

  • Autoři: Vojtěch, J., Novák, T., Andriantsarazo, E., Smotlacha, V., Havlis, O., Vohnout, R., Ing. Michal Špaček, Šlapák, M., Horváth, T., Altmannová, L., Kuna, A., doc. Ing. Jaroslav Roztočil, CSc.,
  • Publikace: Proc. SPIE 12686, Infrared Remote Sensing and Instrumentation XXXI. Bellingham (stát Washington): SPIE, 2023. Proceedings of SPIE. vol. 12686. ISSN 0277-786X. ISBN 978-1-5106-6586-6.
  • Rok: 2023
  • DOI: 10.1117/12.2677256
  • Odkaz: https://doi.org/10.1117/12.2677256
  • Pracoviště: Katedra měření
  • Anotace:
    In the ever-advancing realm of modern technology, the demand for unparalleled precision and stability in timekeeping and frequency control has surged to unprecedented heights. As our interconnected world rellies more than ever on intricate synchronization and seamless communication, the development of cutting-edge optical infrastructure has emerged as a cornerstone in meeting these exacting demands. There has been obvious increased continuous focus on precise time and frequency transmission dissemination at a national and international level recently. We would like to present the situation in the Czech Republic, our strategy, approach, and our experience with a non-commercial, costeffective solution that utilizes optical networks shared with other traffic. The presented solution provides accurate time and stable frequency at a lower operational cost, using the shared spectrum of the CESNET3 network infrastructure.

Implementation and Evaluation of Sum-Int ADC IP-core on NanoXplore FPGA

  • Pracoviště: Katedra měření
  • Anotace:
    The summing integration (SumInt) analog to digital conversion (ADC) technique combines and preserve many of excellent features of double integration and sigma-delta ADCs. It is well suited for application where integral of continuously sensed input signal carries information to acquire. It has been initially conceived at the PiKRON company for digitizing compounds responses measured by UV-VIS spectrophotometric detectors in high-performance liquid chromatography systems. The compound concentration in the sample is proportional to the integral/area under response peak. In a contrast to double integration ADC, the SumInt ADC integrates input signal continuously and does not require reset/idle interval control. In comparison to sigma-delta ADC, the frequency of reference switching is much lower (less charge leakage). The paid price is sampling interval floating in a range of up to one half of the fixed modulator interval. The actual ESA funded De-Risk project focuses on reuse of the technique for low analog components count conversion in radiation tolerant systems where FPGAs are already in use.

Porovnávání časových stupnic UTC(FEL) a UTC(TP) pomocí technologie White Rabbit

  • Pracoviště: Katedra elektrotechnologie, Katedra měření, Středisko výpočetní techniky a informatiky
  • Anotace:
    Článek popisuje inovovaný systém pro porovnávání stupnice UTC(FEL) generované cesiovými hodinami 5071A/001 v. č. 3519 v Laboratoři přesného času a frekvence FEL ČVUT (Praha 6, Dejvice) a národní časové stupnice UTC(TP) udržované v Laboratoři státního etalonu času a frekvence (Praha 8, Kobylisy). Původní systém využíval pro porovnávání metodu společných pozorování (Common-View) pomocí GNSS přijímačů GTR 51/55 a současně dvoucestnou metodu přenosu času po optických vláknech pomocí optoelektronických adaptérů MATRIX. Nová metoda porovnávání je založena na technologii White Rabbit, která je v časových laboratořích FEL ČVUT, ÚFE AV a CESNET předmětem výzkumu od roku 2019.

Za stránku zodpovídá: Ing. Mgr. Radovan Suk