Lidé

Ing. Pavel Petráček

Všechny publikace

Present and Future of SLAM in Extreme Environments: The DARPA SubT Challenge

  • DOI: 10.1109/TRO.2023.3323938
  • Odkaz: https://doi.org/10.1109/TRO.2023.3323938
  • Pracoviště: Multirobotické systémy
  • Anotace:
    This paper surveys recent progress and discusses future opportunities for Simultaneous Localization And Mapping (SLAM) in extreme underground environments. SLAM in subterranean environments, from tunnels, caves, and man-made underground structures on Earth, to lava tubes on Mars, is a key enabler for a range of applications, such as planetary exploration, search and rescue, disaster response, and automated mining, among others. SLAM in underground environments has recently received substantial attention, thanks to the DARPA Subterranean (SubT) Challenge , a global robotics competition aimed at assessing and pushing the state of the art in autonomous robotic exploration and mapping in complex underground environments. This paper reports on the state of the art in underground SLAM by discussing different SLAM strategies and results across six teams that participated in the three-year-long SubT competition. In particular, the paper has four main goals. First, we review the algorithms, architectures, and systems adopted by the teams; particular emphasis is put on LIDAR-centric SLAM solutions (the go-to approach for virtually all teams in the competition), heterogeneous multi-robot operation (including both aerial and ground robots), and real-world underground operation (from the presence of obscurants to the need to handle tight computational constraints). We do not shy away from discussing the “dirty details” behind the different SLAM systems, which are often omitted from technical papers. Second, we discuss the maturity of the field by highlighting what is possible with the current SLAM systems and what we believe is within reach with some good systems engineering. Third, we outline what we believe are fundamental open problems, that are likely to require further research to break through. Finally, we provide a list of open-source SLAM implementations and datasets that have been produced during the SubT challenge and related efforts, and constitute a useful resource for researchers and practitioners.

Adaptive arbitration of aerial swarm interactions through a Gaussian kernel for coherent group motion

  • DOI: 10.3389/frobt.2022.1006786
  • Odkaz: https://doi.org/10.3389/frobt.2022.1006786
  • Pracoviště: Multirobotické systémy
  • Anotace:
    Swarm behaviors offer scalability and robustness to failure through a decentralized and distributed design. When designing coherent group motion as in swarm flocking, virtual potential functions are a widely used mechanism to ensure the aforementioned properties. However, arbitrating through different virtual potential sources in real-time has proven to be difficult. Such arbitration is often affected by fine tuning of the control parameters used to select among the different sources and by manually set cut-offs used to achieve a balance between stability and velocity. A reliance on parameter tuning makes these methods not ideal for field operations of aerial drones which are characterized by fast non-linear dynamics hindering the stability of potential functions designed for slower dynamics. A situation that is further exacerbated by parameters that are fine-tuned in the lab is often not appropriate to achieve satisfying performances on the field. In this work, we investigate the problem of dynamic tuning of local interactions in a swarm of aerial vehicles with the objective of tackling the stability–velocity trade-off. We let the focal agent autonomously and adaptively decide which source of local information to prioritize and at which degree—for example, which neighbor interaction or goal direction. The main novelty of the proposed method lies in a Gaussian kernel used to regulate the importance of each element in the swarm scheme. Each agent in the swarm relies on such a mechanism at every algorithmic iteration and uses it to tune the final output velocities. We show that the presented approach can achieve cohesive flocking while at the same time navigating through a set of way-points at speed. In addition, the proposed method allows to achieve other desired field properties such as automatic group splitting and joining over long distances. The aforementioned properties have been empirically proven by an extensive set of simulated and field experiments, in communication-full and communication-less scenarios. Moreover, the presented approach has been proven to be robust to failures, intermittent communication, and noisy perceptions.

MRS Modular UAV Hardware Platforms for Supporting Research in Real-World Outdoor and Indoor Environments

  • DOI: 10.1109/ICUAS54217.2022.9836083
  • Odkaz: https://doi.org/10.1109/ICUAS54217.2022.9836083
  • Pracoviště: Multirobotické systémy
  • Anotace:
    This paper presents a family of autonomous Unmanned Aerial Vehicles (UAVs) platforms designed for a diverse range of indoor and outdoor applications. The proposed UAV design is highly modular in terms of used actuators, sensor configurations, and even UAV frames. This allows to achieve, with minimal effort, a proper experimental setup for single, as well as, multi-robot scenarios. Presented platforms are intended to facilitate the transition from simulations, and simplified laboratory experiments, into the deployment of aerial robots into uncertain and hard-to-model real-world conditions. We present mechanical designs, electric configurations, and dynamic models of the UAVs, followed by numerous recommendations and technical details required for building such a fully autonomous UAV system for experimental verification of scientific achievements. To show strength and high variability of the proposed system, we present results of tens of completely different real-robot experiments in various environments using distinct actuator and sensory configurations.

An Autonomous Unmanned Aerial Vehicle System for Fast Exploration of Large Complex Indoor Environments

  • DOI: 10.1002/rob.22021
  • Odkaz: https://doi.org/10.1002/rob.22021
  • Pracoviště: Multirobotické systémy
  • Anotace:
    This paper introduces an autonomous system employing multirotor unmanned aerial vehicles for fast 3D exploration and inspection of vast, unknown, dynamic, and complex environments containing large open spaces as well as narrow passages. The system exploits the advantage of small-size aerial vehicles capable of carrying all necessary sensors and computational power while providing full autonomy and mobility in constrained unknown environments. Particular emphasis is put on the robustness of the algorithms with respect to challenging real-world conditions and the real-time performance of all algorithms that enable fast reactions to changes in environment and thus also provide effective use of limited flight time. The system presented here was employed as a part of a heterogeneous ground and aerial system in the modeled Search & Rescue scenario in an unfinished nuclear power plant during the Urban Circuit of the Subterranean Challenge (SubT Challenge) organized by the Defense Advanced Research Projects Agency. The main goal of this simulated disastrous scenario is to autonomously explore and precisely localize specified objects in a completely unknown environment and to report their position before the end of the mission. The proposed system was part of the multirobot team that finished in third place overall and in first place among the self-funded teams. The proposed unmanned aerial vehicle system outperformed all aerial systems participating in the SubT Challenge with respect to versatility, and it was also the self-deployable autonomous aerial system that explored the largest part of the environment.

Autonomous Aerial Swarming in GNSS-denied Environments with High Obstacle Density

  • DOI: 10.1109/ICRA48506.2021.9561284
  • Odkaz: https://doi.org/10.1109/ICRA48506.2021.9561284
  • Pracoviště: Multirobotické systémy
  • Anotace:
    The compact flocking of relatively localized Un- manned Aerial Vehicles (UAVs) in high obstacle density areas is discussed in this paper. The presented work tackles realistic scenarios in which the environment map is not known apriori and the use of a global localization system and communication infrastructure is difficult due to the presence of obstacles. To achieve flocking in such a constrained environment, we propose a fully decentralized, bio-inspired control law that uses only onboard sensor data for safe flocking through the environment without any communication with other agents. In the proposed approach, each UAV agent uses onboard sensors to self-localize and estimate the relative position of other agents in its local reference frame. The usability and performance of the proposed approach were verified and evaluated using various experiments in a realistic robotic simulator and a natural forest. The pre- sented experiments also validate the utility of onboard relative localization for autonomous multi-UAV applications in the ab- sence of global localization information and communication.

Bio-inspired compact swarms of unmanned aerial vehicles without communication and external localization

  • DOI: 10.1088/1748-3190/abc6b3
  • Odkaz: https://doi.org/10.1088/1748-3190/abc6b3
  • Pracoviště: Multirobotické systémy
  • Anotace:
    This article presents a unique framework for deploying decentralized and infrastructure-independent swarms of homogeneous aerial vehicles in the real world without explicit communication. This is a requirement in swarm research, which anticipates that global knowledge and communication will not scale well with the number of robots. The system architecture proposed in this article employs the ultraviolet direction and ranging technique to directly perceive the local neighborhood for direct mutual localization of swarm members. The technique allows for decentralization and high scalability of swarm systems, such as can be observed in fish schools, bird flocks, or cattle herds. The bio-inspired swarming model that has been developed is suited for real-world deployment of large particle groups in outdoor and indoor environments with obstacles. The collective behavior of the model emerges from a set of local rules based on direct observation of the neighborhood using onboard sensors only. The model is scalable, srequires only local perception of agents and the environment, and requires no communication among the agents. Apart from simulated scenarios, the performance and usability of the entire framework is analyzed in several real-world experiments with a fully-decentralized swarm of unmanned aerial vehicles (UAVs) deployed in outdoor conditions. To the best of our knowledge, these experiments are the first deployment of decentralized bio-inspired compact swarms of UAVs without the use of a communication network or shared absolute localization. The entire system is available as open-source athttps://github.com/ctu-mrs.

Fast collective evasion in self-localized swarms of unmanned aerial vehicles

  • DOI: 10.1088/1748-3190/ac3060
  • Odkaz: https://doi.org/10.1088/1748-3190/ac3060
  • Pracoviště: Multirobotické systémy
  • Anotace:
    A novel approach for achieving fast evasion in self-localized swarms of unmanned aerial vehicles (UAVs) threatened by an intruding moving object is presented in this paper. Motivated by natural self-organizing systems, the presented approach of fast and collective evasion enables the UAV swarm to avoid dynamic objects (interferers) that are actively approaching the group. The main objective of the proposed technique is the fast and safe escape of the swarm from an interferer discovered in proximity. This method is inspired by the collective behavior of groups of certain animals, such as schools of fish or flocks of birds. These animals use the limited information of their sensing organs and decentralized control to achieve reliable and effective group motion. The system presented in this paper is intended to execute the safe coordination of UAV swarms with a large number of agents. Similar to natural swarms, this system propagates a fast shock of information about detected interferers throughout the group to achieve dynamic and collective evasion. The proposed system is fully decentralized using only onboard sensors to mutually localize swarm agents and interferers, similar to how animals accomplish this behavior. As a result, the communication structure between swarm agents is not overwhelmed by information about the state (position and velocity) of each individual and it is reliable to communication dropouts. The proposed system and theory were numerically evaluated and verified in real-world experiments.

Large-Scale Exploration of Cave Environments by Unmanned Aerial Vehicles

  • DOI: 10.1109/LRA.2021.3098304
  • Odkaz: https://doi.org/10.1109/LRA.2021.3098304
  • Pracoviště: Multirobotické systémy
  • Anotace:
    This letter presents a self-contained system for the robust utilization of aerial robots in the autonomous exploration of cave environments to help human explorers, first responders, and speleologists. The proposed system is generally applicable to an arbitrary exploration task within an unknown and unstructured subterranean environment and interconnects crucial robotic subsystems to provide full autonomy of the robots. Such subsystems primarily include mapping, path and trajectory planning, localization, control, and decision making. Due to the diversity, complexity, and structural uncertainty of natural cave environments, the proposed system allows for the possible use of any arbitrary exploration strategy for a single robot, as well as for a cooperating team. A multi-robot cooperation strategy that maximizes the limited flight time of each aerial robot is proposed for exploration and search & rescue scenarios where the homing of all deployed robots back to an initial location is not required. The entire system is validated in a comprehensive experimental analysis comprising of hours of flight time in a real-world cave environment, as well as by hundreds of hours within a state-of-the-art virtual testbed that was developed for the DARPA Subterranean Challenge robotic competition. Among others, experimental results include multiple real-world exploration flights traveling over 470 m on a single battery in a demanding unknown cave environment.

Safe Documentation of Historical Monuments by an Autonomous Unmanned Aerial Vehicle

  • DOI: 10.3390/ijgi10110738
  • Odkaz: https://doi.org/10.3390/ijgi10110738
  • Pracoviště: Multirobotické systémy
  • Anotace:
    The use of robotic systems, especially multi-rotor aerial vehicles, in the documentation of historical buildings and cultural heritage monuments has become common in recent years. However, the teleoperated robotic systems have significant limitations encouraging the ongoing development of autonomous unmanned aerial vehicles (UAVs). The autonomous robotic platforms provide a more accurate and safe measurement in distant and difficult to access areas than their teleoperated counterpart. Through the use of autonomous aerial robotic systems, access to such places by humans and building of external infrastructures like scaffolding for documentation purposes is no longer necessary. In this work, we aim to present a novel autonomous unmanned aerial vehicle designed for the documentation of hardly attainable areas of historical buildings. The prototype of this robot was tested in several historical monuments comprising scanned objects located in dark and hardly accessible areas in the upper parts of tall naves. This manuscript presents the results from two specific places: the Church of St. Anne and St. Jacob the Great in Stará Voda, and St. Maurice Church in Olomouc, both in the Czech Republic. Finally, we also compare the three-dimensional map obtained with the measurements made by the 3D laser scanner carried onboard UAV against the ones performed by a 3D terrestrial laser scanner.

Self-Organized UAV Flocking Based on Proximal Control

  • DOI: 10.1109/ICUAS51884.2021.9476847
  • Odkaz: https://doi.org/10.1109/ICUAS51884.2021.9476847
  • Pracoviště: Multirobotické systémy
  • Anotace:
    In this work, we address the problem of achieving cohesive and aligned flocking (collective motion) with a swarm of unmanned aerial vehicles (UAVs). We propose a method that requires only onboard sensing of the relative range and bearing of neighboring UAVs, and therefore requires only proximal control for achieving formation. Our method efficiently achieves flocking in the absence of any explicit orientation information exchange (alignment control), and achieves flocking in a random direction without externally provided directional information. To implement proximal control, the Lennard-Jones potential function is used to maintain cohesiveness and avoid collisions. Our approach may be used independently from any external positioning system such as GNSS or Motion Capture, and can therefore be used in GNSS-denied environments. The performance of the approach was tested in real-world conditions by experiments with UAVs that rely only on a relative visual localization system called UVDAR, proposed by our group. To evaluate the degree of alignment and cohesiveness, we used the order metric and the steady-state value.

Autonomous Reflectance Transformation Imaging by a Team of Unmanned Aerial Vehicles

  • DOI: 10.1109/LRA.2020.2970646
  • Odkaz: https://doi.org/10.1109/LRA.2020.2970646
  • Pracoviště: Multirobotické systémy
  • Anotace:
    A Reflectance Transformation Imaging technique (RTI) realized by multi-rotor Unmanned Aerial Vehicles (UAVs) with a focus on deployment in difficult to access buildings is presented in this letter. RTI is a computational photographic method that captures a surface shape and color of a subject and enables its interactive re-lighting from any direction in a software viewer, revealing details that are not visible with the naked eye. The input of RTI is a set of images captured by a static camera, each one under illumination from a different known direction. We present an innovative approach applying two multi-rotor UAVs to perform this scanning procedure in locations that are hardly accessible or even inaccessible for people. The proposed system is designed for its safe deployment within real-world scenarios in historical buildings with priceless historical value.

Dronument: System for Reliable Deployment of Micro Aerial Vehicles in Dark Areas of Large Historical Monuments

  • DOI: 10.1109/LRA.2020.2969935
  • Odkaz: https://doi.org/10.1109/LRA.2020.2969935
  • Pracoviště: Multirobotické systémy
  • Anotace:
    This letter presents a self-contained system for robust deployment of autonomous aerial vehicles in environments without access to global navigation systems and with limited lighting conditions. The proposed system, application-tailored for documentation in dark areas of large historical monuments, uses a unique and reliable aerial platform with a multi-modal lightweight sensory setup to acquire data in human-restricted areas with adverse lighting conditions, especially in areas that are high above the ground. The introduced localization method relies on an easy-to-obtain 3-D point cloud of a historical building, while it copes with a lack of visible light by fusing active laser-based sensors. The approach does not rely on any external localization, or on a preset motion-capture system. This enables fast deployment in the interiors of investigated structures while being computationally undemanding enough to process data online, onboard an MAV equipped with ordinary processing resources. The reliability of the system is analyzed, is quantitatively evaluated on a set of aerial trajectories performed inside a real-world church, and is deployed onto the aerial platform in the position control feedback loop to demonstrate the reliability of the system in the safety-critical application of historical monuments documentation.

Za stránku zodpovídá: Ing. Mgr. Radovan Suk